DOAG DevCamp2016: Oracle Development Cloud Service Hands On (Part 4)

In part three of the series we completed the task to setup the build system in the DCS for the AppsCloudUIKit application. This final part of the series concludes with setting up the ‘Continuous Integration’ part of the application into the JCS.

Setting up the Continuous Integration to the JCS

The final task is to setup the continuous integration to the Java Cloud Service we use. This is done in the ‘Deploy’ tab where we create a ‘New Configuration’

We then fill in the needed data:

The Configuration name and the application name must match

Nest we select a deployment target. Here we can choose between a JCS and an Application Container Cloud depending on the type of application we develop. As we have created a web application using ADF we select the Java Cloud Service.

We can decide which type of deployment we like: on ‘Demand’ or’ Automatic’. Automatic means that after each build the deploy task is triggered. With the checkbox ‘Deploy stable builds only’ we tell the task to only deploy successful builds. If we choose ‘On demand’ we can select the build we like to deploy

To see the application running in the JCS we can use the URL AppsCloudUIKit (http://140.86.8.75/AppsCloudUIKit/faces/Welcome)

DOAG DevCamp2016: Oracle Development Cloud Service Hands On (Part 2)

In part 1 of this series we talked about the Oracle Development Cloud Service (DCS) in general terms and what we plan to do. This part describes the migration of an application developed for an earlier version of JDeveloper to version 12.1.3 and how to move it into the cloud.

As a test case we use the sample application provided by the Rapid Development Kit which shows a sample on how to easily develop modern, scalable applications using the Alta UI. The image below shows the landing page of the application with the splash screen. The running application can be seen at http://140.86.8.75/AppsCloudUIKit/faces/Welcome

In Part 1 we already downloaded the source of the application, created the DCS project, assigned users to the project and initialized the GIT repository for the application in the DCS. The next step is to migrate the application which was designed using JDeveloper 11.1.1.9.0 to JDeveloper version 12.1.3 which we use in the DCS.

Before we start we checkout a new branch named ‘develop’ from the GTI repository. This allows us to work outside the ‘master’ branch. When we finished the migration we can merge the changes back to the master. This resembles the GIT Flow pattern (see ‘The Git Experience (Part 4)‘).

Migrating is as simple as to open the project in your local JDeveloper 12.1.3 and let JDeveloper do an automatic migration. There are some things which have to be changed in the sources as JDeveloper can’t do them automatically.

  1. We check the libraries used in each of the projects of the AppsCloudUIKit workspace. Make sure that there are no red marked libraries as this would mean that the library is not available in the current defined libraries. If we see one of those (e.g. JSF1.2 which is JSF2.1 in 12.1.3) we need to find an equivalent library for 12.1.3 and choose this instead.
  2. We compile each project and correct any errors we find in the compile window. There are some warnings which we let go for the moment. They tell us that the UI uses some tags or components which have been deprecated in JDeveloper 12.1.3. The components are still available but we should exchange them with the new components in the future. When we compile the projects we have to follow a specific order, the dependency of the project. There is a common project ‘UIKitCommon’ which is used in all other projects. This project holds the foundation of the application. Once the project compiles we have to create an adfLibrary from it which is used in the other projects. For this we right click on the project and select ‘Deploy’->’adflibUIKitCommon‚Ķ’ and follow the instructions.
  3. We need to setup the data used for the application. The application doesn’t use a DB in this version. All data is created and served via POJO Java classes. All of them reside in the ‘DemoData’ project. We compile this project and create an ADF library from it like we did for the ‘UIKitCommon’ project.
  4. We compile and deploy (to adfLibrary) the other projects in this order: ‘DemoCRM’, ‘DemoHCM’, ‘DemoFIN’ and finally ‘DemoMaster’. The ‘DemoMaster’ project create an EAR File which can be deployed to a standalone server.

After this we can run the application in our local server integrated in JDeveloper and see if it works (see the image above). Once this is verified we save all changes in the GIT repository and push them to the cloud based remote GIT Repository. This is like working with any other remote GIT repository, no difference in usage. After this the landing page of the DCS project shows the trail of work as in the image below.

Using the collaboration features

One really nice thing about the DCS is the integrated collaboration features like a wiki page, an issue tracker like Jira and an agile board where we can plan sprints to track the progress of the project.

We create a wiki page to collect all decisions made during development and generating documentation this way. This will help members to understand the project and how they are supposed to work with the project. New members added to the project at a later point in time can use this wiki to understand the project and how to work with the team.

The image below show the start wiki page of the project

and add some basic information about the project. Later we add more info about who we changed the project and how to setup the build system.

The wiki supports cascading pages too. We add a page describing the build system to the project. This allows other team members to efficiently use the build system on the DCS. We talk about details of the build system and how to use it in the next part.

Agile Development

The DCS supports agile development. The tab ‘Agile’ opens a sprint planning view to the project. This is a very neat feature. Teams can use this to plan their tasks and track their progress. Here we can create issues (tasks, feature or issues) which first end up in the bag log. We can create sprints and assign the issues to sprints.

We can work like in e.g. Jira, we drag issues from the backlog to the sprint

to add the issue to the sprint

If you like you can change the agile board, e.g. add progress states

Finally we can start the sprint by defining the start and end date. Once a sprint is started we can look at the active sprint to see the tasks in their different states. This view allows drag & drop to make it easy to change the status of a task.

Once all tasks are finished we can complete the sprint.

A look at the ‘Issues’ tab shows the finished work.

All this works out of the box. As a teaser I added a couple of images from the DCS team feature when they are integrated in JDeveloper 12.2.1

When the DCS supports JDeveloper 12.2.1 the integration to the agile board and issue tracker is as simple as logging into the DCS. No hassle setting up a team server and all other needed software and their adapters.

This concludes the second part of the series. The next part reveals details about the build system.

DOAG DevCamp2016: Oracle Development Cloud Service Hands On (Part 1)

End of February the DOAG held its annual DevCamp in Bonn, Germany. One big part of the DevCamp was a session or better a couple of session about the Oracle Developer Cloud Service and how to use it.

This part shows some general information about the Oracle Cloud. In the next part we show how to migrate an existing application to the cloud and how to use some of the available tools of the Development cloud.

The Developer Cloud Service (DCS) was introduced last year and became available to the public around the OOW2015. It offers a whole toolset to allow development of applications in the cloud. The DCS is bundled with the Java Cloud Service (JCS) which is bundled with the Database Cloud Service (DBCS). There are a couple of other services like Storage Cloud Service , responsible for managing the disk storage needed, and Compute Cloud Service responsible for the security and firewall of all services used by a company. For more information see Fasten your seat belts: Flying the Oracle Development Cloud Service (1- Boarding).

All these services are working together. If you ever have setup a working Oracle environment consisting of a DB, a WebLogic Server, load balancer, ADF Runtime you know that this isn’t an easy task to accomplish. The good news is that this work is done automatically by Oracle provisioning the different services. You as a user or company have to make some decisions like which version of the DB you want to use, or which version of WebLogic Server to install and how many CPUs to use for each service. You can later upscale the number of CPUs or managed server you want to use in total for your system. All this is very flexible.

Why to use the DCS?

Well, as mentions before, setting up a development environment does take some time and hardware. Sometimes it hard to get the time from your admins to get the hardware and setup the software to get the full environment four your development. This is one reason I see at my customers for not upgrading to newer software versions. The department has to buy the hardware and software licenses, without knowing exactly which hardware parameters they later need. Once the evaluation is finished you have the hardware and software on stock without knowing if you really need them. After all it was an evaluation only.

Oracle Cloud Services (Platform as a Service or PaaS in short) allows you to buy or lease the needed hard and software to setup an evaluation stack. You can use the stack as long and you pay for it. You can up/down scale it to your needs. As a sample you can start with a small scale development environment (DB, WeblogicServer with one admin and one managed server) and later scale it up with a load balancer and multiple managed servers in a cluster.

Right now there are two different environments for development available to configure: 11g as JDev 11.1.1.7.0 and 12c as JDev 12.1.3. In a couple of weeks JDev 12.2.1 should be available too.

Depending on the size (RAM, storage or number of OCPUs) you can select ‘metered’ or ‘none metered’ services. For pricing information see https://cloud.oracle.com/en_US/java?tabID=1385147650676 for a sample for the JCS.

Installation or configuration of the DCS is not part of this document. Oracle Developer Cloud Service smoothly and invisibly integrates your development environment with the latest versions of other services in Oracle Cloud, such as Oracle Java Cloud Service and Oracle Database Cloud Service.

Another big plus is the fully integrated development life cycle which allows to create and administer the configurations for code repositories, continuous integration, testing, building, and deployment for all stages of the development.

Developer Cloud Hands On

The remainder of this document talks about the practical work with the DCS. We show which tools are provided and how to use them to setup a CI (Continuous Integration) environment. As a test case we use the sample application provided by the Rapid Development Kit which shows a sample on how to easily develop modern, scalable applications using the Alta UI. The sample was developed by Oracle Applications User Experience team to give developers a foundation to enhance the sample or use the code they like in their own application. The image below shows the landing page of the application with the splash screen. The running application can be seen at http://140.86.8.75/AppsCloudUIKit/faces/Welcome

The application comes with design guide as an e-book and hints on how to use and extend the sample. We start with downloading the source from the web page. The application was developed using JDev 11.1.1.9.0. In the DCS we use JDev version 12.1.3.

Before we start to use the DCS we copy the sources from the zip into a new empty directory. From this directory we start by first logging into the DCS and creating a new project, DevCamp16 in the image below.

The identity domain holds the service (multiple projects) and members who can access the DCS using different roles. Once we work with one of the project we can add members to the project, but first have to add them to the identity domain as users. For this document we are only using one administrator and multiple development users. The DCS administrator assigns new users to the DCS, the project administrator the members of the DCS to the project. A DCS member can be member in zero or many projects in different roles. This way one DCS can be used for different projects. Members of one project can be excluded from others. A member of the identity domain only sees projects he is a member of. This allows a fine grained project landscape.

The project is the development environment we or the team uses to develop an application. A project holds one or more GIT repositories to manage code, a Husdon build server to manage the builds of the software, an issue tracker (kind of Jira), a wiki which we user to document decisions we made during the development, a deployment section which we use to implement a CI environment and finally we get an agile board where we can plan the development (add issues, backlog and sprints).

The last tab we see is the ‘Administration’ tab which allows one or more members to act as the administrators of the project. An administrator can add other members to the project, manage their rights and even remove the project with all its artifacts. The UI is modern and build using JET with Alta UI Design. The image below shows the administration page of the project.

The image below shows the GIT (or more than one if we add more) and the one Maven repository.

In the next tab we get an overview about the project. This is more or less empty as there has not been much work done.

The final tab hold the information about the members of the project.

This concludes part 1. In part 2 we talk about how to migrate the application from the RDK to the DCS. We learn how to setup the build system and integrate with continuous integration service.

Developer Cloud Service with JDeveloper 12.2.1 available

I almost missed that Developer Cloud Service has been updated to 12.2.1. Great news as we now can use JDeveloper 12.2.1 to access the agile capabilities like

  • Interact with Tasks/Issues in JDeveloper
  • Leverage the Team view in JDeveloper (tasks, builds, and code repositories)
  • Connect to DevCS and its projects from inside JDeveloper
  • Create Agile boards and manage sprints in Developer Cloud Service
  • Associate code commits with specific tasks
  • Monitor team activity in the Team Dashboard
  • Handle Git transactions

For more information about how JDeveloper and the DCS are integrated watch this video ‘Agile development with Oracle JDeveloper and Oracle Developer Cloud Service’.

This was possible since last year. So, what’s new?

New is that the JCS is also available in 12.2.1 and that we can use the whole continuous integration scenario. For this we have to configure a 12.2.1 JCS instance which then can be used for deployment. When we select to create a new instance of a JCS we see the new wizard which allows us to select a WebLogic Server 12c in version 12.2.1

On the ‘Edition’ page we don’t find anything new so we skip it and go to the Details page where we specify the needed information for the service, database configuration, backup and the WebLogic user

After getting the confirmation page we create the new service and finally after a short time we see the new service

A look at the Enterprise Manager of the new service shows the new login page

and after logging in the new 12.2.1 Enterprise Manager

It look modern and fresh. However, this is not what this blog is about. I installed my ADF Version Web Service BlogAdfVersionWS to check which ADF version is running in this instance. Selection the modules we find the test point on the right side of the Web Service

After selecting the test point we select to run the ‘GetVersion’ service

and get

That’s right what we expect when running ADF 12.2.1!

Next time we see how to change the build and deployment part of the DCS to work with the JCS 12.2.1.