JDev 12c: Change Label depending on Data in Field

A question on OTN forum JDev & ADF caught my attention. A user ask how to change the label of a field in an af:query depending on data entered in another field of the af:query.

This is an interesting problem as it can be used in other use cases, e.g. in forms, too.

Use case

Before going into detail on how this is implemented, let’s look at the use case in detail. Starting with a normal af:query component showing a search form for locations

We want to change the label of the ‘State’ field depending on the selected Value of the ‘CountryId’ field. The page is simply created by dragging the named criteria ‘All Queryable Attributes’ onto the page as ‘Query with Table’.

To make the UI more interesting we use an af:selectOneChoice to select the country. Depending on the selected country we like to show different labels for the ‘State’ field. If we select the ‘United States of America’ as country, the label should show ‘US States’, if we select ‘Germany’ we want to see ‘Bundesland’ and for Switzerland we want to show ‘Kanton’. For the remaining countries we show ‘State’.

Here we see that the label changed to ‘Kanton’ for the country Switzerland. Selecting the USA will change the label to ‘US State’


To implement this we only need to add some groovy script to the model project. To be precise we add groovy to the attribute label of the view which is used in the UI for the af:query.

Adding the groovy to the view will guarantee that the UI always shows the effect. In the sample (download instructions below) you’ll find a second page where the view is dropped as a af:form. Running this page you’ll see the same effect.

OK, let’s have a look at the groovy script

if (CountryId == 'US') {
  return 'US State';
} else if (CountryId == 'DE') {
  return 'Bundesland';
} else if (CountryId == 'CH') {
  return 'Kanton';
} else if (CountryId != null) {
  return CountryId + ' State';
} else {
  return 'State';

The script checks for specific countries and depending on which country is currently selected it return a special label. For country ‘DE’ it return ‘Bundesland’, for country ‘CH’ it returns ‘Kanton’. For other countries we return the country code we get from the country attribute and add ‘State’ to it. A special case we have to handle is if country is null or empty. In this case we return ‘State’.

Below we see that we add the script to the attributes ‘UI Hint’ tab as ‘Label’. This is only possible in 12c, so if you are using an earlier version, you have to use java code to get the same result.

This is all we have to do. The sample which is build using JDev can be downloaded from BlogChangeQueryLabel. The sample uses the HR DB schema.

JDeveloper: Using Task Flow Parameters to Show Different UI in a Region

Lately a couple of questions on the JDeveloper & ADF space regarding using task flow parameters came up.

Use Case

One specific use case was how to show different UI in the same region if a row is just created or if the user wants to edit an already existing row.

Full description is that the user sees a table with e.g. regions of the HR DB schema. Now there are two buttons, one ‘Create new…’ and one ‘Edit current…’. When clicking the ‘Edit current…’ button the currently selected row of the table should be loaded into a form. There the user can edit everything but the primary key (PK). If the user click the ‘Create new…’ button the same form should be visible, but the PK should be editable too.

Running Application

To make it more visible let’s start with the finished application:


Running Application

The final UI looks like in the image above. The UI is composed of four areas as in the image below:


The ‘Header’ and ‘Search Panel’ area are only for convenience. In the ‘Panel Collection Bar’ holds a toolbar with two buttons ‘Create new…’ and ‘Edit current…’. The table below shows the result of a search of the Region table from the HR DB.

Selecting a row in the table we can edit the selected record by clicking on the ‘Edit current…’ button


This will open a new screen showing the selected row. Above the ‘RegionId’ we see a text indicating that we are in ‘edit’ mode and we can’t edit the ‘RegionId’ attribute as it’s the PK of the row and should not be editable.

Here we can edit the RegionName attribute and store the change by clicking the ‘Commit’ button:

Likewise, if we click the ‘Create new…’ button we go to the same form, but this time the text above the ‘RegionId’ attribute tells us that we are in ‘create’ mode and we can edit the RegionId.

Committing the changes we get a new row in the Regions HR DB table.


Ok, let’s talk about how to implement this. For the model layer we run the ‘Business Components from Table…’ wizard on the model project and select the regions table from the HR DB. For this demo this is all we need to do.

The UI consist of two pages, index.jsf and Region.jsf. The index.jsf page is the start page and shows the UI as in the first image. Everything is easily done by drag and drop the right components in the right order onto the page. I spare the details for this as you can look at the sample which you can download using the link at the end of the post.

The only thing I like to go into detail is the toolbar with the two buttons ‘Create new…’ and ‘Edit current…’. These buttons do two things:

  1. Set a mode property to pageFlowScope
  2. Navigate to the second page Region.jsf

The Toolbar definition looks like

 <af:toolbar id="t1">
   <af:button text="Create new..." id="b1" action="show">
     <af:setPropertyListener from="#{'create'}" to="#{pageFlowScope.mode}" type="action"/>
   <af:button text="Edit current..." id="b2" action="show">
     <af:setPropertyListener from="#{'edit'}" to="#{pageFlowScope.mode}" type="action"/>

The create button has a af:setPropertyListener added which sets a pageFlowScope attribute ‘mode’ to ‘create’ and navigates to the Region.jsf page by executing the ‘show’ navigation from the unbounded task flow adfc-config.xml



The edit button uses an af:setPropertyListener which sets a pageFlowScope attribute ‘mode’ to ‘edit’ and then executes the navigation ‘show’ to go to the Region.jsf page. The logic to insert a new row or to edit an existing row is done in the bounded task flow ‘region-edit-create-btf.xml’ which we talk about later.

The Region.jsf page consists of a Header and a Region holding an af:form of the selected row of the Region:



The region itself is a bounded task flow with the following properties


Here we see one parameter with the name ‘mode’ which stores its value in a pageFlowScope attribute named ‘mode’. One other thing we need to make sure of is that the region shares the data control with its parent (in this case the adfc-config unbounded task flow) and always begins a new transaction. This make the bounded task flow a unit of work, it encapsulates the work in the task flow. The interface of the bounded task flow describes what the unit of work does:

Interface of ‘region-edit-create-btf.xml’ task flow:

If mode is set to ‘edit’, the current selected row of the Region table is shown in a form and can be edited. 

If the mode is set to ‘create’, a new row is created and inserted into the Region table and can then be edited.

The user can commit or cancel the operation. After each of this operations the task flow executes a parent action ‘back’.


We see that the default action of the task flow is a router which uses the parameter set to the task flow to execute the create of the edit navigation:


after that the now current record is shown on the fragment (see the area marked ‘Region’ in image Region.jsf). Below we see the panelFormLayout used for the region:

 <af:panelFormLayout id="pfl1">
   <af:outputText value="we are in #{pageFlowScope.mode eq 'create'? 'create' : 'edit'} mode" id="ot1"/>
   <af:inputText value="#{bindings.RegionId.inputValue}" label="#{bindings.RegionId.hints.label}"
     required="#{bindings.RegionId.hints.mandatory}" columns="#{bindings.RegionId.hints.displayWidth}"
     maximumLength="#{bindings.RegionId.hints.precision}" shortDesc="#{bindings.RegionId.hints.tooltip}" id="it1"
     disabled="#{pageFlowScope.mode ne 'create'}">
     <f:validator binding="#{bindings.RegionId.validator}"/>
     <af:convertNumber groupingUsed="false" pattern="#{bindings.RegionId.format}"/>
   <af:inputText value="#{bindings.RegionName.inputValue}" label="#{bindings.RegionName.hints.label}"
     required="#{bindings.RegionName.hints.mandatory}" columns="#{bindings.RegionName.hints.displayWidth}"
     maximumLength="#{bindings.RegionName.hints.precision}" shortDesc="#{bindings.RegionName.hints.tooltip}" id="it2">
     <f:validator binding="#{bindings.RegionName.validator}"/>
   <f:facet name="footer">
     <af:panelGroupLayout id="pgl2">
       <af:button text="Commit" id="b2" action="commit"/>
       <af:button text="Rollback" id="b1" immediate="true" action="rollback">

Let’s look at the actions which are done in the region. If the user commits the changes the commit action from the data control is called which saves the changes to the db. If the ‘cancel’ button is clicked, the rollback method from the data control is called which reverts any changes done in the task flow. After the commit or rollback a parentAction (paraneAction1) is called which executes the ‘back’ navigation in the adfc-config.xml which navigates back to the index.jsf page.

Please note that we could have added the calls to commit and rollback to the buttons in the region.jsff. I decided to put them into the task flow instead to show the whole task flow and how it works in one place.

Implement different UI according to the task flow parameter

So, how do we use the parameter passed to the bounded task flow to switch the UI?

This is done by using an expression language (EL) which points to the ‘mode’ attribute stored in the pageFlowScope. Sample: the text above the RegionId is created with an af:outputText like

<af:outputText value="we are in #{pageFlowScope.mode eq 'create'? 'create' : 'edit'} mode" id="ot1"/>

The EL ‘#{pageFlowScope.mode eq ‘create’? ‘create’ : ‘edit’} ‘ is used to differentiate between the modes. Likewise the disable property of the RegionId attribute uses the EL

...disabled="#{pageFlowScope.mode ne 'create'}"...

which is true when the passed parameter is not ‘create’. In this case the disabled property is set to false, meaning that the field can’t be edited.

That’s it. There is no line of java code necessary to implement this use case.


You can download the sample which was build using JDeveloper and uses the HR DB schema from GitHub BlogTaskFlowParameter.

JDev12c: Searching an af:tree

On the JDev & ADF OTN space I got a question on how to search an af:tree and select and disclose the nodes found matching the search criteria.

Problem description

We like to search an af:tree component for string values and if we find the value we like to select the node where we found the string we searched for. If the node where we found the string is a child node we disclose the node to make it visible.

Final sample Application

I started with building a sample application and show the final result here:


We see a tree and a check box and a search field. The checkbox is used to search only the data visible in the tree or the whole data model the tree is build on. The difference is that you build the tree from view objects which can hold more attributes than you like to show in the tree node. This is the case with the sample tree as we see when we search for e.g. ‘sa’ in the visible data


When we unmark the check box and repeat the search we get


As you see we found another node ‘2900 1739 Geneva’ which doesn’T have the searched string ‘sa’. A look into the data model, the row behind this node shows


We see that the street address which we don’t show in the node has the search string. To show that the search works for every node we set the search field to ‘2’ and get hits in different levels


The sample application can be downloaded from GitHub. For details on this see the end of this blog.


Now that we saw the running final application let’s look at how to implement this. We start by creating a small ADF Fusion Web Application. Is you like to you can start by following the steps given in  Why and how to write reproducible test cases.

Model Layer

Once the base application is created we setup the data model we use to build the tree. For this sample we use ‘Regions’, ‘Countries’ and ‘Location’ of the HR DB schema. To build the model we can use the ‘Create Business Components from Table’ wizard and end up with


As you see I’ve renamed the views. The names now show what you’ll see when you use them. We only have one top level view object ‘RegionsView’ which will be the root of our tree in the UI. The child view are used to show detailed data.

View Controller

For the view controller layer we start by a simple page from the ‘Quick Layout’ section


Now we add a title and add an af:splitter to the content area. Here we set the width of the first facet to 250 px to have enough room for the search field. We start with building the af:tree from the data control by dragging the ‘RegionsView’ from the data control onto the content area and dropping it as af:tree

Here we don’t select to show all attributes available but only a few.  Later we see that we can search the whole data model and not just only the visible data. Finally we bind the tree to a bean attribute to have access to the tree from the bean when we have searched it. This is a pure convenience, we could search the component tree each time we need the component to avoid the binding to a bean attribute.  When we create the bean we name it ‘TreeSelectionBean’ and set its scope to ‘Request’.  The bean will end in the adfc-config.xml


the final code for the af:tree looks like

<af:tree value="#{bindings.RegionsView.treeModel}" var="node"
rowSelection="single" id="t1"
  <f:facet name="nodeStamp">
    <af:outputText value="#{node}" id="ot2"/>

Now we create two pageDef variables as java.lang.String to hold the search string and the selection for the check box. If you need more information on how to create pageDef variables see Creating Variables and Attribute Bindings to Store Values Temporarily in the PageDef.


In the first facet we add a check box and an af:inputText inside an af:panelGroupLayout and bind the value properties to the pageDef variables as

<af:panelGroupLayout id="pgl2" layout="vertical">
  <af:selectBooleanCheckbox text="node only" label="Seach" id="sbc1"
  <af:inputText label="Search for" id="it1" value="#{bindings.mySearchString1.inputValue}"/>
  <af:button text="Select" id="b1"

The final thing to do is to wire the button to a bean method which does all the hard work. In the code above this is done with an actionListener which is pointing to the same bean created for the tree binding.

<span></span>public void onSelection(ActionEvent actionEvent) {
<span></span>JUCtrlHierBinding treeBinding = null;
// get the binding container
<span></span>BindingContainer bindings = BindingContext.getCurrent().getCurrentBindingsEntry();
<span></span> // get an ADF attributevalue from the ADF page definitions
<span></span> AttributeBinding attr = (AttributeBinding) bindings.getControlBinding("mySearchString1");
 String node = (String) attr.getInputValue();

// nothing to search!
 // clear selected nodes
<span></span> if (node == null || node.isEmpty()){
<span></span> RichTree tree = getTree();
<span></span> RowKeySet rks = new RowKeySetImpl();
<span></span> tree.setDisclosedRowKeys(rks);
 //refresh the tree after the search
<span></span> AdfFacesContext.getCurrentInstance().addPartialTarget(getTree());


<span></span> // get an ADF attributevalue from the ADF page definitions
<span></span> AttributeBinding attrNodeOnly = (AttributeBinding) bindings.getControlBinding("myNodeOnly1");
<span></span> String strNodeOnly = (String) attrNodeOnly.getInputValue();
<span></span> // if not initializued set it to false!
<span></span> if (strNodeOnly == null) {
<span></span> strNodeOnly = "false";
<span></span> _logger.info("Information: search node only: " + strNodeOnly);

<span></span>//Get the JUCtrlHierbinding reference from the PageDef
<span></span> // For JDev 12c use the next two lines to get the treebinding
<span></span> TreeModel tmodel = (TreeModel) getTree().getValue();
<span></span> treeBinding = (JUCtrlHierBinding) tmodel.getWrappedData();
<span></span> // For JDev 11g use the next two lines to get the treebinding
<span></span> // CollectionModel collectionModel = (CollectionModel)getTree().getValue();
<span></span> // treeBinding = (JUCtrlHierBinding)collectionModel.getWrappedData();
<span></span> _logger.info("Information tree value:" + treeBinding);

//Define a node to search in. In this example, the root node
 //is used
<span></span> JUCtrlHierNodeBinding root = treeBinding.getRootNodeBinding();
 //However, if the user used the "Show as Top" context menu option to
 //shorten the tree display, then we only search starting from this
 //top mode
<span></span> List topNode = (List) getTree().getFocusRowKey();
<span></span> if (topNode != null) {
 //make top node the root node for the search
<span></span> root = treeBinding.findNodeByKeyPath(topNode);
<span></span> RichTree tree = getTree();
<span></span> RowKeySet rks = searchTreeNode(root, node.toString(), strNodeOnly);
<span></span> tree.setSelectedRowKeys(rks);
 //define the row key set that determines the nodes to disclose.
<span></span> RowKeySet disclosedRowKeySet = buildDiscloseRowKeySet(treeBinding, rks);
<span></span> tree.setDisclosedRowKeys(disclosedRowKeySet);
 //refresh the tree after the search
<span></span> AdfFacesContext.getCurrentInstance().addPartialTarget(tree);

In line 4-7 we get the value the user entered into the search field. Lines 9-19 check if the user has given a search string. If not we clear the currently selected nodes from the tree by creating a new empty RowKeySet and setting this to the tree.

If he got a search string we check if we should search the visible data only or the whole data model. This is done by getting the value from the check box (lines 21-28). Now we data from the tree (lines 30-37).

One thing we have to check before starting the search is if the user has used the ‘show as top’ feature of the tree. This would mean that we only search beginning from the current top node down (lines 39-49).

The search is done in a method

private RowKeySet searchTreeNode(JUCtrlHierNodeBinding node, String searchString, String nodeOnly)

this we pass the start node, the search string and a flag if we want to search the whole data model or only the visible part. The method returns a RowKeySet containing the keys to the rows containing the search string (line 51-52). This list of row keys we set to the tree as selected rows (line 54). As we would like to disclose all rows which we have found, we have to do one more step. This step uses the row key and traverses upward in the tree to add all parent node until the node is found where we started the search (line 53-55). This is necessary as you only see a disclosed child node in a tree if the parent node is disclosed too. For this we you a helper method (line 54) and set the row keys as disclosed rows in the tree.

<span></span> * Helper method that returns a list of parent node for the RowKeySet
<span></span> * passed as the keys argument. The RowKeySet can be used to disclose
 * the folders in which the keys reside. Node that to disclose a full
<span></span> * branch, all RowKeySet that are in the path must be defined
<span></span> * @param treeBinding ADF tree binding instance read from the PageDef
 * file
<span></span> * @param keys RowKeySet containing List entries of oracle.jbo.Key
<span></span> * @return RowKeySet of parent keys to disclose
<span></span> private RowKeySet buildDiscloseRowKeySet(JUCtrlHierBinding treeBinding, RowKeySet keys) {
<span></span> RowKeySetImpl discloseRowKeySet = new RowKeySetImpl();
<span></span> Iterator iter = keys.iterator();
 while (iter.hasNext()) {
<span></span> List keyPath = (List) iter.next();
<span></span> JUCtrlHierNodeBinding node = treeBinding.findNodeByKeyPath(keyPath);
<span></span> if (node != null && node.getParent() != null && !node.getParent().getKeyPath().isEmpty()) {
 //store the parent path
<span></span> discloseRowKeySet.add(node.getParent().getKeyPath());
 //call method recursively until no parents are found
<span></span> RowKeySetImpl parentKeySet = new RowKeySetImpl();
<span></span> parentKeySet.add(node.getParent().getKeyPath());
<span></span> RowKeySet rks = buildDiscloseRowKeySet(treeBinding, parentKeySet);
<span></span> discloseRowKeySet.addAll(rks);
<span></span> return discloseRowKeySet;

This concludes the implementation of the sear in a tree.


The sample application uses the HR DB schema and can be downloaded from GitHub

The sample was build using JDev


Reset Table Filter when Navigating to Page

This blog is a continuation of an older blog about how to reset the filters of an af:table component from a bean (How to reset a filter on an af:table the 12c way). In the older blog I described the technique to reset the filters defined in the FilterableQueryDescriptor of a filterable af:table.

Now users on OTN JDev & ADF space ask for a small variation of the use case. The filter should reset whenever a navigation takes place to the page which holds the af:table. No button should be clicked to reset the filter values.

As the original technique can still be used, I don’t go into detail about how to do this. It’s described in the other blog for JDev versions 12c. The same technique can be applied to 11g but different Java code has to be used (see How to reset a filter on an af:table). I changed the sample application, which you can download (see link at the end of the blog), so that the query panel with the af:table has an additional button to navigate to a different page.

Run through

After starting the application we see the page with an empty table as no search was done. Clicking hte search button will give us


The ‘Navigate’ button simply navigate to another view which holds twu buttons which let you navigate back to the original page.


The ‘back without clear filter’ just navigates back to the page, whereas the ‘back with clear filter’ navigates to a method in the task-flow which prepares the af:table for reset. This is the bounded task flow:


The EmpQueryPanel holds the af:query with the result table as shown in the first image. The view is marked as default activity in the task flow. When you first run the application (page RTFQPTest.jsf) the task flow is added as region to the page showing the query panel with the result table.

When you hit the search button on the page the table shows all employees. Now we can filter the results like ‘FirstName’ contain ‘s’ and ‘LastName’ contains ‘k’


Now if we hit the ‘Navigate’ button we go to the page shown in image 2 with the two buttons. If we click on hte ‘back without clear filter’ we come back to the page as shown above. The filter values are still present!

If we click on the ‘back with clear filter’ we see


so the filter values are cleared. So, how is it done?


In the original sample we had a button which we used to trigger a method which get the FilterableQueryDescriptor from the table. This descriptor holds the filter values which are cleared by looping over all ConjunctionCriterion which are the filter values. Here is the full method for 12c

 * method to reset filter attributes on an af:table
 * @param actionEvent event which triggers the method
 public void resetTableFilter12c(ActionEvent actionEvent) {
   FilterableQueryDescriptor queryDescriptor = (FilterableQueryDescriptor) getEmpTable().getFilterModel();
   if (queryDescriptor != null &amp;&amp; queryDescriptor.getFilterConjunctionCriterion() != null) {
     logger.info("Filter found...");
     ConjunctionCriterion cc = queryDescriptor.getFilterConjunctionCriterion();
     List&lt;Criterion&gt; lc = cc.getCriterionList();
     if (!lc.isEmpty()){
       logger.info("...iterating criterions...");
     for (Criterion c : lc) {
       if (c instanceof AttributeCriterion) {
         AttributeCriterion ac = (AttributeCriterion) c;
         Object object = ac.getValue();
         logger.info("...found " + ac.getAttribute().getName() + " value: " + object);
         if (object != null) {
getEmpTable().queueEvent(new QueryEvent(getEmpTable(), queryDescriptor));

public void setEmpTable(RichTable empTable) {
 this.empTable = empTable;

public RichTable getEmpTable() {
 return empTable;

A look into the log after clicking hte ‘back with clear flter’ shows


We see that the for loop caught all filters and resetted every filter to null.

The interesting part is how we triggered the call of the method resetTableFilter12c. As there is no button or other action event involved we use a trick. We add a method to the ‘ShortDesc’ property of the af:table which points to a bean method


Now, whenever the af:table is rendered it goes to the bean method asking for the test for hte short description. We use the call of this method as trigger to reset the filters. As this method is called multiple times during the JSF lifecycle, we need some kind of flag which tells us that the reset operation is done already. Otherwise we will spende lots of time calling the reset method without need.

public void setShortDescription(String shortDescritopn) {
logger.info("Set ShortDescription called");
this.shortDescription = shortDescritopn;

public String getShortDescription() {
logger.info("get ShortDescription called");
AdfFacesContext adfFacesCtx = AdfFacesContext.getCurrentInstance();

// get the PageFlowScope Params
Map<String, Object> scopePageFlowScopeVar = adfFacesCtx.getPageFlowScope();
Boolean reset = (Boolean) scopePageFlowScopeVar.getOrDefault("resetFilter", Boolean.FALSE);
boolean flip = reset.booleanValue();
if (flip) {
logger.info("ResetTable Filter!");
scopePageFlowScopeVar.put("resetFilter", Boolean.FALSE);
logger.info("Unset filter reset flag!");

return shortDescription;

As there are cases where the short description is ask for which we don’t want to use as triggers to clear the filters, we need another flag which we can check. For this we set a flag in the pageFlowScope of hte bounded task flow named ‘resetFilter’.  in the method we get the pageFlowScope and read the flag (lines 8-13). Only when the flag is set to true in the pageFlowScope we call theresetTableFilter12c method (line 14-19) and reset the flag to false.

The only thing left to do is to set the flag in the pageFlowScope when we liek the filters to get cleared when navigating to the page. For this we use the method action ‘resetTableFilter’ which is defined in the task flow. This method action points to a bean method


which puts the flag ‘resetFilter’ with a value of ‘Boolean.TRUE’ into the pageFlowScope:

public void setRestFlag() {
AdfFacesContext adfFacesCtx = AdfFacesContext.getCurrentInstance();
// get the PageFlowScope Params
Map<String, Object> scopePageFlowScopeVar = adfFacesCtx.getPageFlowScope();
scopePageFlowScopeVar.put("resetFilter", Boolean.TRUE);
logger.info("Set filter reset flag!");


You can download the sample application from GitHub:  BlogResetTableFilter12c

The sample uses JDev and the HR DB schema.

JDeveloper is out


Today October, 19th 2016 JDeveloper was released. From the first look at it it’s only a maintenance release.  There is currently no ‘What’s new’ document, only a release notes are available.

The release notes show only some bug fixes and some deprecation. Noteworthy are some changes in the REST runtime. One of them is that ADF REST HTTP PUT is deprecated functionality. From the doc

ADF REST HTTP PUT is deprecated functionality

Oracle has deprecated the functionality for executing HTTP PUT methods on ADF REST resource requests. In the current release, the describe for ADF REST resources continues to display PUT actions when the backing view object has the Update operation enabled (the operation enables both PUT and PATCH methods); however, ADF REST service clients should avoid making PUT requests (replace all items of the view row) as this functionality will be desupported in a future release

Another change in the REST department is that adf date and datetime attributes are no longer described as string but as date and datetime. Interesting if you work with ADFbc and Oracle JET.

There are some other small bug fixes and deprecation’s of oracle.domain data types and the dvt:stockGraph. You should use dvt:stockChart instead.

Let’s wait if Oracle releases an ‘What’s new’ document in hte near (?) future which will spear us some time searching for new stuff 🙂

Developer Cloud Service: Continuous Integration with JDeveloper 12.2.1

The last blog showed that the Oracle Developer Cloud Service is now available for JDeveloper and ADF 12.2.1 (Developer Cloud Service with JDeveloper 12.2.1 available). The missing part is the connection of the DCS to the newly created JCS for version 12.2.1. This we show in the blog.

The ground work, how to set up a build system for the DCS has been shown in Fasten your seat belts: Flying the Oracle Development Cloud Service (3 – Take Off – ROTATE). We now have to find out which environment variable to use for the 12.2.1 installation. At the time I wrote the mentioned blog there where only environment variables for and available. Looking at the documentation Using Hudson Environment Variables we find that the variables

  • ORACLE_HOME_SOA_12_2_1=/opt/Oracle/MiddlewareSOA_12.2.1/jdeveloper
  • MIDDLEWARE_HOME_SOA_12_2_1=/opt/Oracle/MiddlewareSOA_12.2.1
  • WLS_HOME_SOA_12_2_1=/opt/Oracle/MiddlewareSOA_12.2.1/wlserver

Are the right ones (and the only ones which point to 12.2.1). In the application.properties file (from the ‘… Take Off…’ blog) we exchange

# Don't change anything below!


# Don't change anything below!

This change will use the JDeveloper 12.2.1 to run ojdeploy and configure the application to run on a WebLogic Server 12.2.1. This should do the trick and we can use the DCS build system to create application using ADF 12.2.1. As the application I used for the ‘Fasten your seat belts…’ blog series was pretty simple I like to show the result using the application I used for a presentation at the DOAG DevCamp2016, named AppsClouUIKit. You can read all about this application in a blog I wrote here DOAG DevCamp2016.

The application was build using JDeveloper and has been migrated during the DevCamp to 12.1.3. This was the DCS version which was available at the time of the DevCamp. The first task is to migrate the source to 12.2.1 by creating a new branch in the GIT repository for the new 12.2.1 version.

We Clone the repository and create a new branch 12_2_1 which we use to build the AppsCloudUIKit for 12.2.1. As we are now running JDeveloper 12.2.1 we can use the Team-Server to get the sources from the DCS GIT repository

But we can use any other GIT client to get it. As this is covers in other blogs I’ll skip the details here. In the end we have this branch tree

Where the green marked local branch 12_2_1 is the one we are working on.

After changing the application.properies as shown above we can run the build using ant on the local machine

By selecting the ‘deploy’ target.

The result is an EAR file in the deploy folder

Setting up the build job

Let’s check-in the changes and setup the build in the DCS. Here are the steps for the build job

With this we can build the application to get the result

Setting up the Deployment

The final task is to set up the deploy task to deploy the application on the JCS_12_2_1. When we select the ‘Deploy’ tab we see the existing deployment configuration for the 12.1.3 JCS.

For the JCS 12.2.1 we created a new JCS instance with a different IP (public). Before we can create a new configuration for the 12.2.1 JCS instance we have to allow the Hudson user access to the JCS. This process is described in detail at Deploying an Application from Oracle Developer Cloud Service to Oracle Java Cloud Service

It’s absolutely necessary to get the Oracle Developer Cloud Service SSH public key and add this key to the JSC 12.2.1 instance as authorized key. Please follow the instructions given in the link above to do so.

After this is done we can create a new deployment configuration

Start filling in the dialog by giving the configuration a name. Next we create a new ‘Deployment Target’

In the dialog fill in the public IP address from the new JC 12.2.1 and select SSH Tunnel. The user name and password is the one you selected when you created the JCD instance. Test the connection and close the dialog by clicking ‘Use Connection’

Finally we can complete the Deployment dialog

We choose ‘On Demand’ here which let us specify which job/Build and artifact to use. A click to ‘Save and Deploy’ closes the dialog and the artifact will be deployed to the JCS 12.2.1. The URL to open the application is AppsCloudUIKit 12.2.1

And we should see

Developer Cloud Service with JDeveloper 12.2.1 available

I almost missed that Developer Cloud Service has been updated to 12.2.1. Great news as we now can use JDeveloper 12.2.1 to access the agile capabilities like

  • Interact with Tasks/Issues in JDeveloper
  • Leverage the Team view in JDeveloper (tasks, builds, and code repositories)
  • Connect to DevCS and its projects from inside JDeveloper
  • Create Agile boards and manage sprints in Developer Cloud Service
  • Associate code commits with specific tasks
  • Monitor team activity in the Team Dashboard
  • Handle Git transactions

For more information about how JDeveloper and the DCS are integrated watch this video ‘Agile development with Oracle JDeveloper and Oracle Developer Cloud Service’.

This was possible since last year. So, what’s new?

New is that the JCS is also available in 12.2.1 and that we can use the whole continuous integration scenario. For this we have to configure a 12.2.1 JCS instance which then can be used for deployment. When we select to create a new instance of a JCS we see the new wizard which allows us to select a WebLogic Server 12c in version 12.2.1

On the ‘Edition’ page we don’t find anything new so we skip it and go to the Details page where we specify the needed information for the service, database configuration, backup and the WebLogic user

After getting the confirmation page we create the new service and finally after a short time we see the new service

A look at the Enterprise Manager of the new service shows the new login page

and after logging in the new 12.2.1 Enterprise Manager

It look modern and fresh. However, this is not what this blog is about. I installed my ADF Version Web Service BlogAdfVersionWS to check which ADF version is running in this instance. Selection the modules we find the test point on the right side of the Web Service

After selecting the test point we select to run the ‘GetVersion’ service

and get

That’s right what we expect when running ADF 12.2.1!

Next time we see how to change the build and deployment part of the DCS to work with the JCS 12.2.1.

JDev 12.2.1: Remote Task Flows in Action

The new JDeveloper version 12.2.1 is just out and has a lot of new features to investigate. In this post we see how remote task flows work. Yes, they are finally here and they are working. At least if you install a patch available from support.oracle.com.
The downloadable version on JDev 12.2.1 has a small bug which prevents you from running remote task flows (refer to https://community.oracle.com/thread/3816032). Support and the dev team quickly delivered a patch for this. To get the patch, open a service request and ask for a patch for bug 22132843.

Let’s start. We need two applications to show how remote task flows are implmented. One is the remote task flow producer, one consumes the remote task flow. An application can be both, producer and consumer. For this sample we keep it simple and define one app as producer and one as consumer.

Producer Application
This application is really simple as it consists of only one page and one task flow which shows the departments and its employees of the HR DB schema.

Remote Task Flow Producer Application

Remote Task Flow Producer Application

The image above shows the running application stand alone. The single page has the header and a simple task flow beneath it to show the departments and their employees.

There are two properties to set in the task flow.
1) in must be remote invocable
2) the transaction must be isolated

Next we have to make the application aware that it should be a remote task flow producer. For this we edit the projects properties and select the ‘ADF Task Flow’ node.

Project Properties for Producer Application

Project Properties for Producer Application

Please note is the second checkbox selected which allows anonymous users to access the remote task flow. This should not be used in a production environment as this would allow anybody to access the task flow. The doc shows how to secure the access to a remote task flow (see link below).

These settings will add a special servlet and a servlet filter to the web.xml file of the application.

There are more things to consider which you find in the docs at How to Configure an Application to Render Remote Regions

That’s it for the simple producer application.

Consumer Application
The second application is simple too. Here we use a single page which again uses the HR DB schema to show the departments as an editable table in a panel splitter. On the right of this we show the remote task flow of the producer application.

Consumer Application

Consumer Application

In the image above the remote task flow isn’t visible as it is not added at the moment.
To make the remote task flow available we need to run the producer application. Here we have to be careful if we try this out using the embedded WebLogic Server. As only one application can be started in debug mode, we need to start the producer application as a normal application.
Run Producer Application

Run Producer Application

In the consumer application we set the project properties for the ADF Task Flow to allow it to consume remote task flows

Consumer Application Project Properties

Consumer Application Project Properties

Now we create a remote task flow connection. Open the resource palette and select to create a ‘Remote Region Producer…’ from the IDE connections.
Here we fill in the needed info like the path to the remote producer servlet which will get us the names of all remote task flows the application holds. To access the remote task flow we define the URL endpoint

The details about what to fill in are again from the doc.

In the consumer application we now open the one page and drag the remote task flow from the ressource palette onto the page and drop it in the right hand splitter

Drop Remote Region in Consumer Application

Drop Remote Region in Consumer Application

This will give us the known image in design mode as if you use a normal region
Consumer Page

Consumer Page

We are ready to run the consumer application and get
Running Consumer Application

Running Consumer Application


You can download the sample application from GitHub:
Consumer Application
Producer Application
Both application use the HR DB schema. Make sure to adjust the DB connection to point to your db server.

Fasten your seat belts: Flying the Oracle Development Cloud Service (4 – In Flight 1)

In the last part of the series Fasten your seat belts: Flying the Oracle Development Cloud Service (3 – Take Off – ROTATE) we finished the work on the first cloud workspace, a utility project holding framework extension classes we use in the upcoming development. We created a branch to add the build system we can use in the cloud as well as on the developer’s machine.
The developer checked in all his/her changes, but did not merge the branch back into the mainline development (master). This part describes how this action, called a merge request, is done. This action can be used as a quality gate to review the code the developer has build.
After logging into the Oracle Developer Cloud as developer we select the ‘Merge Requests’ tab of the project

Merge Requests

Merge Requests

where we create a new request by clicking on the ‘New Request’ button. In the next dialog we fill in the needed data
Create Merge Request dialog

Create Merge Request dialog

The target branch is the branch we like the feature branch to be merged into, in our case it’s the branch called ‘master’. If you have other branches you like to merge you can do this too and later merge the whole merged feature branches back into the master branch. The ‘review Branch’ is the branch we want the review on, in our case the ‘feature-setup-build’ branch. In the ‘reviews’ field we must add at at least one member of the team, but can add multiple members if we like. Each of the reviewers then gets a notification via e-mail that a review is waiting.

The developer can only wait now for the action of the reviewers. Sure he can do something else like start another task for the project 🙂

The mails give some basic information about the request and the links to quickly access the cloud. After logging into the Cloud as reviewer the same ‘Merge Requests’ looks like

As we see, there now are the ‘Approve’ and ‘Reject’ buttons available for the Reviewer.
The reviewer should look at the changes made in the branch e.g. by looking at the commits for it.
Commits of the feature branch

Commits of the feature branch

As we don’t know what these files are doing, we reject the merge request

This will notify the developer who can and should act on the comment.

In this case the files are obsolete and can be deleted from the feature branch before merging (by the developer).

After changing the merge request by adding a hint that we delete the obsolete files, the reviewer again get some e-mails notifying him about this change.
Looking at the request after login, the reviewer approves the request and merges the branch into the master branch.

If we now look at the master branch we see the build files as part of the master branch.

One final thing to do is to switch the build system configuration from the feature branch to the master branch. When we started working on the feature we set up the build system to use the feature-setup-build branch. We now switch the build setup to use hte master branch.

This concludes this part of the series. Next we build a simple ‘normal’ ADF application in the cloud, applying what we have learned so far.

Fasten your seat belts: Flying the Oracle Development Cloud Service (3 – Take Off – V1)

In part three of the series about the Oracle Developer Cloud we start working on a project as a member of a team in the developer cloud.

Before starting a new project some basic ground has to be covered. What architecture and technology should the project use as well as which package path to use. For the technology the the decision is easy as we want to use ADF. For the architecture we can choose on one of the patterns outlined at ‘Angles in the architecture’.

A good starting point is to introduce a for every ADF project, regardless of the architectural pattern, is a framework extension project (see ‘Extending a Helping Hand’). So we start with this too.

As a developer can’t create a new repository in a cloud project, we have to do this as a user with admin rights.

The first thing to note is that you should create an empty repository (unmark the ‘Initialize repository with README file’). If you initialize the repository with a README file, the developer can’t later just push his initial local version of the JDev workspace into the remote repository. The local repository has be updated with the README file first.

Now that the remote, empty repository exists we switch roles and work as a developer. For this we use a different login as a user who only has developer rights in the Oracle Developer Cloud.
Before the developer uses the new repository he creates a new workspace or project. We create a workspace for the framework extension library.

Next we add the ‘ADF Model Runtime’ library to the project and then the framework extension classes to the workspace.

Right now we don’t need to add or change any of the code in the created classes. If we later need to add some global functionality we come back to these classes. The next thing to do is to create an ADF library from the created classes

To make the new library available for other projects you can create a new file system connection using the same path we specified in the deployment descriptor

Later we come back to this step as we see that we have to change it a bit to make it work in the cloud. Right now we leaf it as is as this shows how you normally would do this in a normal project.
The next thing to do is to initialize a local GIT repository and push this to the Oracle Development Cloud repository as the initial master

and then push the local master branch to the Oracle Developer Cloud repository. For this we use the repository URL we get when we log into the cloud as the developer
Copy git repository address

Copy git repository address

Using this URL we push the local repository to the remote one

to finally see the changes in the cloud

More Decisions
With the basics covered we have to make another decision:
How to define the workflow for changes to make to the project sources.
Should all team members work on the trunk (called the mainline) or should each member use a branch to work on (called a feature branch). Both of these practices have their supporters and naturally opponents. The first is more CI like per definition. Feature Branches on the other side are not CI by the definition, as the code is not continuously integrated into the main line. This dispute is not for this post and may be not for this blog. Anyway, lets start with feature branching.
This allows us to show a feature of the Oracle Developer Cloud as it allows for code reviews which are mostly used if you work with feature branches, but can be used for the other practice too.

Feature: add build files
The feature we implement is to setup a build system for our framework extension project. We name the feature ‘feature-setup-build’

We learned in part 1 that the Oracle Developer Cloud provides a Continuous Integration server (CI). We plan to use this CI server to build our library whenever the code changes. For this we need to use ANT or Maven as the build system. For this project we choose ANT and can now build the needed build.xml files from the project

To finish this part we add the new files to our local repository and then push them to the remote as a new branch.

We push the local changes to the remote repository in the cloud using the same branch name

We had not looked into the created build.xml file or the build.properties files, we had them just created and pushed them into the repository. Question is, will they work?
Let’s try it on the local machine first.

Now we can run the ANT target ‘all’ which is the default one.
Well, as JDev 12.1.3 has somehow eliminated the ANT tool bar buttons running ANT on a project is a bit cumbersome (hopefully the ANT build buttons are back with the next release)

OK, this works like a charm.

As this post is already very long, we split the take off into two parts, V1 and ROTATE. This concludes part V1. Next time we make the necessary changes to the build files to integrate them to the clouds build system and start the CI process.

Note: for those who wonder about the terms V1 and ROTATE:
– V1 is the maximum speed at which an aircraft pilot may abort a takeoff without causing a runway overrun
– ROTATE or Vr is the speed of an aircraft at which the pilot initiates rotation to obtain the scheduled takeoff performance